Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Microbiol ; 8(3): 363-366, 2023 03.
Article in English | MEDLINE | ID: covidwho-2268888

Subject(s)
Immunity , Rodentia , Animals , Humans
2.
Trends Microbiol ; 30(8): 778-792, 2022 08.
Article in English | MEDLINE | ID: covidwho-1663909

ABSTRACT

The interferon (IFN) response is the major early innate immune response against invading viral pathogens and is even capable of mediating sterilizing antiviral immunity without the support of the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate IFN responses, indirectly determining virological outcomes. This review outlines our current knowledge of the interactions between the gut microbiota and IFN responses and dissects the different mechanisms by which the gut microbiota may alter IFN expression to diverse viral infections. This knowledge offers a basis for translating experimental evidence from animal studies into the human context and identifies avenues for leveraging the gut microbiota-IFN-virus axis to improve control of viral infections and performance of viral vaccines.


Subject(s)
Microbiota , Virus Diseases , Animals , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Interferons/metabolism
3.
Viruses ; 12(8)2020 08 18.
Article in English | MEDLINE | ID: covidwho-1453290

ABSTRACT

Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus-virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus-virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus-virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.


Subject(s)
Coinfection/virology , Gastroenteritis/virology , Virus Diseases/physiopathology , Viruses/classification , Viruses/pathogenicity , Animals , Asymptomatic Infections , Disease Models, Animal , Feces/virology , Humans , Intestines/virology , Mice , Primates
4.
Trends Immunol ; 42(11): 1009-1023, 2021 11.
Article in English | MEDLINE | ID: covidwho-1458853

ABSTRACT

Interferons (IFNs) are among the first vertebrate immune pathways activated upon viral infection and are crucial for control of viral replication and dissemination, especially at mucosal surfaces as key locations for host exposure to pathogens. Inhibition of viral establishment and spread at and from these mucosal sites is paramount for preventing severe disease, while concomitantly limiting putative detrimental effects of inflammation. Here, we compare the roles of type I, II, and III IFNs in regulating three archetypal viruses - norovirus, herpes simplex virus, and severe acute respiratory virus coronavirus 2 (SARS-CoV-2) - which infect distinct mammalian mucosal tissues. Emerging paradigms include highly specific roles for IFNs in limiting local versus systemic infection, synergistic activities, and a spectrum of protective versus detrimental effects of IFNs during the infection response.


Subject(s)
COVID-19 , Virus Diseases , Animals , Humans , Immunity, Innate , Interferons , Mucous Membrane , SARS-CoV-2 , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL